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The two-dimensional Jacobian conjecture states that given f and g in C[x, y], if the Jacobian
3(f, 8)/3(x, y) e C*, then the transformation (f, g):CxC—CxC is invertible. In this paper we
give a proof of this under the further assumption that the degree of f or g has at most two prime
factors.

1. Let f and g be complex polynomials, f, g€ C[x, y]. Put
S Sy
&x &y

the Jacobian of (f, g): C*—C>. If (f, g) is invertible, x, y € CLf, g, then it is easy to
see that [f, g] is a non-zero constant, [f, g€ C*. The Jacobian conjecture is the
converse: If [f,g] € C* then (f, g) is invertible.

[fel=

b

2. The Jacobian conjecture is still not settled, but some partial results are known
(see [1] for a recent survey). In 1955, A. Magnus [2] proved the following. Put
m=deg(f), n=deg(g). If [f,g] €C*, and m or n is prime, then (f, g) is invertible.
Later, in 1977, Nakai-Baba [3], by making an elegant use of weighted gradings on
Clx, y], extended Magnus’ result to include the cases when m or n is 4, and when
the larger of m and n is twice an odd prime. Our partial result is the following.

Theorem. If [f,gl€C*, and m or n has at most two prime factors, then (f, g) is
invertible.

3. Before we get into the proof of this theorem, several remarks are in order. If
(f; &) = (Ax+ By*, Cy) or (f, g)=(Cx, Ay+ Bx*), where k is an integer =0, 4 and
CeC*, and BeC, then clearly (f, g) is invertible. Such a transformation (f, g) is
called an elementary transformation. The composite of elementary transformations
is clearly invertible. Wright [4] has shown that if (f, g) is invertible, then it is a com-
posite of elementary transformations. Although this is a nice result to know, we do
not make use of it. However, in trying to show that a given (f, g) is invertible, we
are free to pre- or post-transform it by any elementary transformation.

0022-4049/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)



216 H. Appelgate, H. Onishi

4. Given f and g in C[x, y], we shall write f~g to mean that f=Ag for some
AeC*. If f and g are non-zero forms of degrees m and n, respectively, and
Lf, g1 =0, then it is easy to see that f~h" and g~ A" for some form & of degree
d=gcd(m, n), and where my=m/d, ny=n/d (cf. (22)).

5. Let f and geClx, y] and suppose [f, gl € C*. Let m=deg(f) and n =deg(g). If
m=n=1, then clearly (f, g) is invertible, x, ye C[ f, g]. Assume that m>1 or n>1.
Let f, (resp. én) be the highest homogeneous component of f (resp. g). Then
[fn> £, =0 and hence, by (4), f,,~h™ and g,~h™ for some form h. We may
assume that f,, =A™ and g,=h". If we knew that, say, m divides n, then with
k=n/m, deg(g —f*)<n and we can use induction on the degree to finish the pro-
blem. Thus it would be nice to be able to prove: if [f, gl e C*, then m divides n or
n divides m.

6. In view of (5) we set up the hypothesis as follows. Let f, geCl[x, y] and put
deg(f)=dm, deg(g) =dn, where gcd(m,n)=1. Suppose [f, g e C*. We would like
to show that m=1 or n=1. Magnus’ result is that if d=1, then m=1 or n=1.
Nakai-Baba’s result is that if d<2, then m=1 or n=1. Our result is that if d is a
prime number, then m=1 or n=1, i.e. we have the following

Theorem. Let f, g, m, n and d be as above. If d is 1 or a prime number, then m = 1
orn=1.

7. In case it is not completely obvious why the theorem in (6) implies the theorem
in (2), here is a proof. Suppose, say, m has at most two prime factors. Then
ged(m,n)=1, p, q or pg, where p and g are prime numbers. If gcd(m, n)=pq, then
m=pq and m divides n. In all other cases, by (6), m divides n or n divides m
and n is 1 or a prime number. Then with k=n/m and a suitable A eC*, g,=
g—Af*eCl[f, g] has degree n,<n (cf. (5). By induction on gcd(m, n) such that m
or n has at most two prime factors, x, y € C[f, g,]1CCl[/, g]. Similarly for the other
case.

8. The rest of this paper is devoted to the proof of the theorem in (6). We shall first
list some key lemmas needed to prove the theorem, then deduce the theorem from
them, and then turn to the proofs of the lemmas.

9. Following Nakai-Baba we consider various weighted gradings on C[x, y]. By a
(rational) direction we mean a pair ( p, q) of integers such that gcd(p,q)=1and p>0
or g>0. Let (p,q) be a direction. A function f:C2—C is called (p, q)-homo-
geneous of degree n if

S@xt7)=1t"f(xy) forall x,yand 2 A

10. By a (p, q)-form we mean a non-zero ( p, g)-homogeneous polynomial fe C[x, y];
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its (p, g)-degree is denoted by d), ,(f). A (p,g)-form of degree n looks like
f = E Atjxiy j’
pi+qgi=n
where A;; € C. If pg<0, then d, ,(f) could be negative. If f is a (p, g)-form, then
every factor of fis a (p,q)-form. Every feClx, y] has the (p, g)-decomposition
f=X, f, into (p,q)-homogeneous components f, of degree n. The (p,g) com-
ponent of highest degree is called the (p,q)-leading form of f.

11. Given fe C[x, y], let S; denote the set of points (, j) in Z X Z such that Ax'y’ is
a term of f for some A€ C*. Let W; denote the convex hull of S;U{(0,0)}. fis a
(p, q)-form iff S,#@ and S is contained in a line of slope —p/q. We can now state
the key lemmas: there are five of them.

12. Lemma. Let f and geClx, y] and assume [f,gl~1. Put d, (f)=dm and
d, 1(8) =dn, where gcd(m,n)=1, dm>1 and dn>1. Then for each direction (p, q),
there is a (p,q)-form h of positive degree such that h™ (resp. h")~the (p,q)-
leading form of f (resp. g).

13. Lemma. Let f,g, m,n and d be as in (12). Let h be a (1, 1)-form given by (12).
Then there are inequivalent linear forms x,y, and distinct non-negative integers
a,b such that h=x%y".

14. Lemma. Let f, g, m, n and d be as in (12). Then there exists a convex polygon
(i.e. a closed polygonal region) W with vertices in Z XZ such that Wy=mW and
W,=nW.

g

15. Lemma. Let f, g, m, n, d and W be as in (14). If E is an edge of W with a
negative slope — p/q, where gcd(p,q)=1 and ¢>0, then p=1 or g=1.

16. Lemma. Let f, g, m, n, d and W be as in (14). If d is 1 or a prime number, then
W is a triangle.

17. Lemma (12) and the idea behind the proof of Lemma (14) are due to Nakai-
Baba. As will be clear from the proof of the theorem given in (19) and (20) below,
if we could show that W is a triangle without any condition on d, then the conjecture
would be settled.

18. Given f and g as in (14), the convex polygon W is called the basic web for (f, g)
in terms of (x, y). Since [f, g]l~1, (1,0) and (0,1)€ S;US, and hence W must con-
tain vertices (a,0) and (0, b)) with a>0 and b>0.

19. Lemma. Let f, g, m, n, d and W be as in (14). If W is a triangle with vertices
©0,0), (0,1), (d,0), then m=1 or n=1.



218 H. Appelgate, H. Onishi

Proof. The direction of the edge between (d,0) and (0,1) is (1,d) and h=y+ Ax?
with A#0is a (1,d) form given by (12). Put x; =x and y, =y+ Ax?. We have
f~yr+ X Aijxiyj-
i+dj<dm

The term x'y’ gives rise to terms ~xi*%y{=* for 0<k=<j and (i+ dk)+d(j-k)=
i+dj<dm. Thus the basic web W, for (f, g) in terms of (x;,y;) is a triangle with
vertices (0, 1), (0,0) and (d;,0) with 0<d, <d, provided dym>1 and d,n>1. Thus
if m>1and n> 1, then this process can go on forever, which is absurd.

20. Proof of the Theorem. By (16), W is a triangle. We may assume that the vertices
of W are (0,0), (d,0) and (0, ¢) with c<d. Let (p, g) be the direction of the edge be-
tween (d,0) and (0,c). By (15), p=1 or g=1. Since c=<d, if g=1, then p=1. Thus
p=11in any case, and cg =d. if d=1 then c=1 and we are finished by (19). Suppose
d is a prime number and ¢> 1. Then g=1 and c=d. Thus, by (13), there are linear
forms x; +y; and integers a#b such that A=xfy? is a (1, 1)-form as in (12). We
have a+ b=d and
f"xfm.)’{’m + Z Aijx{ylj-
i+j<dm

Thus the basic web W, for (f, g) in terms of (x;, ¥;) has a vertex (a, b). But, since
W, is a triangle by (16), ab=0, say b=0. Then a=d and W, has vertices (d,0) and
(0,c;) with 0<c;<d. Then ¢;=1 and we are finished by (19).

21. We now turn to the proofs of the 5 lemmas (12) through (16). These proofs are
in turn dependent on various lemmas. First of all, by differentiating the relation (A)
with respect to ¢, we obtain

Euler’s Lemma. If f:C2—C is a differentiable (p,q)-homogenous function of
degree n, then pxf.+ qyf,=nf.

22. Lemma. Let f and g be (p,q)-forms of degrees dm>0, dn>0, respectively,
where gcd(m,n)=1. If [ f,ql =0, then there is a ( p, q)-form h of degree d such that
f~h™ and g~h".

Proof (cf. Proposition 2 of [3]). First suppose that m =n=1. Then by Euler’s lemma
( 25))
g 8y/\4qy g
(& 266
—8x fx g 0 )

This implies that f~g. In case m+#n, by considering f” and g™, we get that
f"~g™. The result now follows using unique factorization in Cl[x, y].

and hence
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23. Let f and geClx, y] and suppose [f,g]~1. Let f=Y f; and g=Y g; be the
(p, 9)-decompositions into (p, g)-forms f; (resp. g;) of degree i (resp. j). Then since
the (p, g)-degree of [f, gl is i+j—p—gq,

£=0, if k#p+gq,

LUEN | it kmpag

i+j=k

(B)

Lemma (12) follows from this and (22).

24. Lemma. Let f, g, m, n, d and h be as in (12). Then there is a (p, q)-form w and
an integer N >0 such that [h, w] = h".

25. Since the proof of (24) requires an entirely different type of argument, we

postpone it until the end. Let us assume it for now and prove the remaining lemmas
(13) through (16).

26. Lemma. Let ¢ be an irreducible ( p, q)-form and F a ( p, q)-homogeneous rational
Junction of degree n#0 belonging to the local ring

R,={/f/g|f,g€C(x y],g#0 (mod p)}.
If [¢, F1=0 (mod ¢), then F=0 (mod ¢).

Proof. By Euler’s lemma and the hypothesis,

Ox —y Fy - 0
(qy px><Fx>_<nF> (mod o)

and hence, with d=d, ,(¢),

px @ 0 _ F, _ 0
Loy o )ar)=90(2)= () woso

Thus ¢,nF=0 and ¢, nF=0 (mod ¢). But, since o,n#0 or ¢,n#0 (mod ¢), F=0
(mod ¢).

27. Lemma. Let w and h be ( p, q)-forms with d,, ,(w)#0. If [h, w] =0 (mod h), then
every irreducible factor of h divides w.

Proof. Let ¢ be an irreducib!e factor of 4 and put h=¢'h,, h;#0 (mod ¢). Then
[h, wl=ip'~'h,[p, w] (mod¢’) and hence [p,w]=0 (mod¢). Thus, by (26), ¢

divides w.

28. Lemma. Let w and h be (p, q)-forms such that [h, w] =h™ Sor some N> 1. If
p+q>0and d, ,(h)=0, then h divides w.

Proof. Let ¢ be an irreducible factor of 4 and put h=g¢'h, and w=g/w,, hyw,; %0
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(mod ¢). If i<, then ¢'*! divides w. Assume i=j. Modulo ¢%,
0=[h,wl=[¢'hy, 0’ w|]

i+j-1

=(Pi+j[h1,W1]+i¢i+j_lh1[¢, wil—Jjo wilo, hy]

and hence ih,[p, w;1—jw, [¢, h;]1=0 (mod ). Consider F=wi{/h{eR,. We have
[0, F1=(wi™ ' /h{* )ik, lp, wi1—jw [, 1y]) =0 (mod ¢).

We claim that d, ,(F)#0. Put a=d, ,(h), B=d, (W), a1=d, 4(h)), Bi=dp 4(W))
and d=d, ,(¢). Since [hw]=h", B=(N-1a+p+gq. Since N>1, a=0 and
p+q>0,>a. Since i>0, i=jand =0, if>ja. Since a=id+ a,; and f=jd + B,
we get that if; > ja,. Thus d,, ,(F)=ia;—jB;>0. By (26), F=0 (mod ¢) and hence
w;=0 (mod ¢) which is false. Thus i<j. We have shown that if ¢,,...,¢, are the
irreducible factors of A, then hg, --- ¢, divides w.

29. Corollary. Let f, g, m, n, d and h be as in (24). If p+q>0, then [h, w]l=h for
some (p, q)-form w.

30. Lemma. Given h and w in Cix, y), if [h, wl=h, then w is square-free.

Proof. Let ¢ be an irredupible fgctor of w and put h=_¢ihl and w=g’w, where
hyw;#0 (mod ¢). Then ¢'h,=[¢'h;,¢’w;]1=0 (mod ¢’*/~!) and hence i=i+j—1
which implies j<1.

31. Lemma. Let h be a (1,1)-form. If [h,wl=h for some (1,1)-form w, then
h=x{ y{’ for some linear forms x,+y, and non-negative integers a+b.

Proof. Since [h,w]=h, d, (W)=2. w is square-free by (30). Thus w=x,y, for
some linear forms x; +y,. Then, by (27), h=x%y} for some a and b. Since [k, w] =
[X{ ¥}, x 311 =(a—b)x{y[x1, 3], a#b.

32. Lemma (13) now follows from (29) and (31). We can also take care of Lemma
(14); it is a consequence of (13). Let h=x{ y{’ be as in (13). W, is a triangle or a line
segment. Let (a;, b;) be a vertex of W), other than (0,0) and drop the subscripts.
Then (ma, mb) (resp. (na, nb)) is a vertex of Wy (resp. W,). Suppose a>0. Then let
E; (resp. E,) be the left edge of W (resp. W,) from (ma, mb) (resp. (na, nb)). Claim
that E; and E, are parallel. (This is trivial if W), is a right triangle.) Since (0,1)€
S;US,, the slope of E;or of E, is <b/a. Let (i, g) (resp. (k,/)) be the other vertex
of E; (resp. E,). Suppose E; and E, are not parallel. Then

mb—j nb-1
= s
ma—i na-—-k

say >. Then I/k>b/a and we can choose a direction (p, q) such that (ma, mb) is
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the (p, g)-leading point of Sy and (k, /) is the (p, g)-leading point of S;. Then we get
the contradiction that

[xmaymb, xkyl] =m(a1— bk)xma+k— lymb+l—1 =0

by (23). Thus E; and E, are parallel. Next we claim that i/j=k/l. In fact, take a

direction (p, q) such that (i, j) (resp. (k,/)) is the (p,g)-leading point of S, (resp.
Sg)- Then by (23)

[xiyd, x%y!] = (il — jk)xi k= 1yi+1=1 =g
and hence i/=jk. We now have the similarity of the triangles
((0,0), (ma, mb), (i, j)) and ((0,0),(na,ndb),(k,1)).
Since (m,n)=1, we get (a,,b,) € Z X Z such that
(i,j)=(ma,,mb,) and (k,1)=(na;,nb,).

If a; >0, then repeat the argument above. If 5> 0, then we can go to the right also.
In this way we arrive at the desired polygon W. This completes the proof of (14).

33. Lemma. Let h and w be (p, q)-forms such that [h, w]=h.

() If p>1 and g>1, then h~x"y® for some non-negative integers a+b.

(i) If p=1 and g>1, then h~ x“(y + Bx?)? for some non-negative integers a+b
and BeC.

Proof. Since [h,w]=h, d, ,(w)=p+gq. If p>1 and g>1, then w~xy and hence
h~x°y® for some non-negative integers a and b by (27) and a#b as in (31). Sup-
pose p=1 and g>1. Then

w=Axy+ Bx?*!

for some A and BeC. A#0 by (30) and w~x(y+Bx?) for some BeC. Then
h~x°(y+ Bx?)? for some non-negative integers a and b by (27) and a# b as before.

34. Lemma (15) follows from (29) and (33(i)). In fact, let 4 be a (p, g)-form given
by (12) for the direction (p,q) of the edge E. Then p>0, ¢>0 and A is not a
monomial. Thus p=1 or g=1.

35. Lemma. Let h and w be (0, 1)-forms such that [h, w] = h. Let'x" y° be the (1,1)-
leading term of h and b>0. If b does not divide a, then h=(x—A)"y” for some
AeC.

Proof. Put A=y°H(x), HeClx]. Since [hwl=h, dy ,(W)=1. Put w=yW(x),
WeClx]. If deg W=1, then w~ (x—A)y for some A eC and hence h = (x — A)°y”
by (27). Suppose n=deg W > 1. We have

[Y°H, yW1=y"(H'W—-bHW')=y*H
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and hence

H'W-bHW'=H.
The formal degree of the left side is a+n—1 and this is >a. Thus a—bn=0 and
b divides a.

36. Lemma. Let h and w be (p, q)-forms such that [h, wl=h. Let p<0, x"y® be the
(1, 1)-leading term of h, a>b>1 and —p/q<(b—1)/a. If (a,b)=1, then h=x"y".

Proof. Replace —p by p so that the direction is (—p,q). Put h=x'y/H(t) and
w=x yW(t), where t=x%y” and HO)W(0)#0. Put a=d_, ,(h), B= d_, ,(w) and
c¢=il—jk; a=qj—pi=qb—pa and B=gql- pk. Since [h, wl=h, B=g—p and hence
k=1I1=1 by (30). Thus w=xyW and we have

[h, wl=x'y/(BtH'W — atHW' + cHW)=x'y/H.
If ¢=0, the left side is divisible by y/*”. Thus c¢#0 and
BtH'W — ot HW' + cHW = H. ©)

Put m=degh and n=deg W. If n=0, then m=0 by (27) and h=x'y/=xy°. Sup-
pose n>0. Since the formal degree of the left side of (C) is m +n,

Bm—an+c=0. (D)

It remains to show that this is impossible under the conditions imposed on (g, b) and
(—p,q). We have

a=i+mq and b=j+mp.

Since a=gb—pa and B=q—p and c=j—i, (D) gives that
a(pn+1)=b(gn+1).

Suppose (@, b)=1. Then
pn+1=bi and gn+1=al

for some integer A>0. Then

bi-1_p _b-1
al-1 q a

and hence a(A - 1)+ b=<1. Thus b=1, a contradiction.

37. Let f, g, m, n, d and W be as in (14). Call a vertex (a, b) of W positive if there
is a direction (p, g) such that p>0, g>0 and (g, b) is the (p, g)-leading point of W.
If (@, b) is a positive vertex of W, then a+b. In fact, choose a direction (p, g) such
that p>1, g>1 and (g, ) is the (p, g)-leading point of W and let 4 be a (p, g)-form
given by (12). Then by (29) and (33(i)), a#b.
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38. Lemma. Let f, g, m, n, d and W be as in (37). Let (a,b) be a positive vertex
of W such that ab>0 and E the left edge of W from (a, b). Let (p, q) be the direction
of E; note g>0. If p>0, then q=1 and the other vertex of E is (0, pa+ b).

Proof. Let 2 be a (p, g)-form given by (12). Suppose p>0. Then [h, w] = h for some
(p, @)-form w by (29). Suppose g>1. If p>1, then A is a monomial by (33(i)). Thus
p=1. Then by (33(ii)), h~x'(y +Ax?) for some non-negative integers i+j and
A €C. Since h is not a monomial, 4 #0. Since E is the convex hull of S, (q,b) =
(i+qj,0) and b=0. Thus g=1. Then by (33(ii)), #~y’/(x+Ay?) for some non-
negative integers i #j and 4 € C*. Since E is the convex hull of S, (i, /) = (a, b) and
the other vertex of E is (0, pa+ b).

39. Lemma. Let f, g, m, n, d, W, (a,b) and (p,q) be as in (38). If p<O0, then b> 1.

Proof. Suppose b=1. Then p=0 and the edge E of (38) connects (a,1) and (0,1)
and h=yH, HeC[x]. Let x; be a linear factor of H and put H=x{H,, H; #0
(mod x;). Then in terms of x; and y; =y,
S=yx{"H ()" + E A,-_,-xfy{.
j<m

Thus the basic web W, for (f, g) in terms of (x;, y;) has (g, 1) and (¢, 1) as vertices.
But since W, must have a vertex (0,/) with />0, this is impossible. Thus b>1.

40. Lemma. Let f, g, m, n, d, W, (a,b) and (p,q) be as in (38). If a>b>0 and
(a,b)=1, then p>0.

Proof. Suppose p<0. Then b>1 by (39). Let h be a (p, g)-form given by (12). First
suppose that p<0. Since ¢>b>1 and W has a vertex (0,c) with ¢>0,
—psb—csb~1 < b

—<1.
q a a a

Since —p/gq< 1, p+ q>0 and hence, by (29), [h, w] =k for some (p, g)-form w. Then
by (36), 4 is a monomial. Thus p=0. Since b>1 and (a,b)=1, b does not divide
a. Thus by (35), h=(x—A)*y? for some 4 €C. In terms of the variables x; =x— A
and y,=y, we are in the case p<0.

41. We can now prove the final lemma (16). In fact, let (@, b) be a (1, 1)-leading point
of W;a+b=d. If d=1, then W is clearly a triangle. Assume d is a prime number.
We may assume that (a, b) is a positive vertex of W, say a>b. We want to show
that 5=0. Suppose b>0. Then (a,b)=1. Let E be the left edge of W from (a, b),
(p, q) its direction and A a (p, g)-form given by (12). Then by (40), p>0. Then by
(38), g=1 and (0, pa+ b) is the other vertex of E. But since (g, b) is a (1, 1)-leading
point of W, pa+b=<d. Thus p=1 and h=(x+Ay)*y? for some 4 € C* (cf. (38)).
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Put x;=x+ Ay and y; =y and consider the basic web W) for (f,g) in terms of
(x1, 1) (@ b) is the (1, 1)-leading point of W] and is a positive vertex of W;. Apply-
ing the same argument to W, we arrive at a contradiction.

42. It remains to prove Lemma (24). We approach this quite formally. Let
t, Xy, X, ... be variables and consider the ring

R=C[t,t™, x;,x,...1.

Let a and J be integers >0 and introduce a grading on R by assigning degrees to
t and the x;’s by

degt=0 and degx;=da—i.
43. Lemma. Let f be an integer >0 and put y;=0 for all j<0 and y0=tﬁ. Then
there exists a family of homogeneous polynomials y; € R of degree 6 —j such that
ay; t'7%dy;_,
L e (B
ax; a OJt )
for all i>0and jeZ.

Proof. Let j>0 and assume we have y, for all /<j. In view of (E), to see y; exists,
it is sufficient to verify that

9 <3LJ‘_) _9 (QZJ_-_k> ®)
axk ot 3x,- at

for all />0 and k>0. Since j—-i<j,

9 (&) _3 <3yf-f> _d <t““ ay,-_f_k>
axy \ ot ar \ ax; it\ « at
and this is equal to the right side of (F) by symmetry.

44. Let {y;} be the general solution of (E). Since y;_; =0 for i >j, y; is independent
of x; for i>j. By the degree condition, y; contains a term of the form cz” with an
arbitrary constant ce C iff j>0 and ¢ divides j, and if so, v=8—~j/d. If specific
numbers are chosen for the arbitrary constants, the resulting family is called a par-
ticular system.

45. Lemma. Let {y;} be a particular system and let {u;} and {v;} be families of
differentiable functions C X C—C such that u; =0 for i<0 and uy=h®. Given j >0,
if vi=y/(hu,,...,u) for all I<j, then

ZI: [wj_, v =[hah® ' (vj—w)l, where w;=y;(huy,...,u;).

Proof. Let ' indicate the partial derivative with respect to either variable in the do-
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main. We have uj=ah® 'k’ and

, 0y ' dy,
v, = —l h'+ ;y'{ u;
at i=1 0X;
for all /<j with the understanding that the partial derivatives of y, are evaluated
at (hu,,...,u). Thus

N M-\

Jj-1
[ —pol=ah® [hv]+ /Z:o [u;_ v,

and

:go [u;_nul= i _nhl+ Z Z il

1=0 I=1 i=1 0X;
By using (E) one easily verifies that

Jj—1

Z [ _nhl=ah® '[w;,h]
and

j=1

EZ[

,u;] =0.
[=1 i=1 a - l]
Thus we get the equality.

46. Let (p,q) be a direction and » a (p, g)-form of degree & which is not a proper
power. Put

D, ,={pi+gj|i=0,;=0}.

Let uy=h" and vy=hf. Let u; (resp. v;) be a (p,q)-form of degree da—i
(resp. o —j) with the agreement that u; =0 (resp. v;=0) if i<O0 (resp. j<O0) or
da—i¢D, . (resp. op-j&D, ).

Lemma. Let h, u; and v; be as above. Given r>0, if

2{: {uj_,v]=0 forall j<r, Q)
then there exists a particular system {y;} such that

vi=yilhuy,...,u;) forall j<r.
Proof. Since vy=hf= Yo(h), the claim is true for j<O0. Let 0<j<r and assume it
for all /<j. Then by (45), [A, v;—w;]=0, where w;=y;(hu,,...,u;). Suppose

v;¥w;. If v>0 is sufficiently large, then h’(v;—w;) is a (p,q)-form of degree
0=0v+J8—/j>0 and

[h, hv(vj - Wj)] =0.
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Put t=(d4,0)=(d,j). Then by (22), there is a (p, g)-form h, of degree t such that
h~h?* and h*(v;—w))~h".

Since A is not a proper power, t=0 and J divides j and we get that v;=
w; + ch#~/% for some c e C. Absorbing the term ct#~//% into y;, we obtain the claim
for j.

47. Lemma. Let h, u; and v; be as in (46) and put r=da+0f—p—q. If (G) holds
and

; [ur—l’ 1)1] ~1, (H)

then there exist a (p,q)-form w and an integer N >0 such that

[h, wl=h".

Proof. By (46), v;=y;(h,u,,...,u;) for all j<r. Then by (45),
[h, aha_l(vr_ wr)] -~ 13

where w,=y,(h u,,...,4,). If N>O0 is sufficiently large, then w=ha"**"1(v,—w,)
is a (p,g)-form and [h, w]~ A"

48. We can now prove (24). Let
f=Xf and g=Yg;
i J

be the (p, g)-decompositions as in (23). Put u;=f,,_; (resp. v;=gy,_;) with the
agreement about u; =0 (resp. v;=0) as in (46). Then the conditions (B) become the
conditions (G) and (H) and we have uy~h™ and vy~h". We may assume that
uy=h" and vy=h". h may be a proper power; put h=h{, where h; is not a proper
power. Put 6=d, ,(h,), a=em and B=en. Then d=ed, da=dm and df=dn. By
(47) there exist a (p, g)-form w and an integer N; >0 such that [A;, w] =h{v !, Since
[A,, hywl=h]*!, we may assume that N;=1 (mod e). Then :

[, W] = ehf ™ [y, W]~ =1+ N = B,

where N=1+(N,;—1)/e. This proves (24) and the proof of the theorem is now
complete.

49. We conclude the paper with some remarks. Let f, g, m,n,d and W be as in (14).
When d is a prime number we get that m=1 or n=1 by looking at the edges of W
(other than the horizontal and vertical edges). Even if d is not a prime number, if
d is small, we get that m=1 or n=1 by looking at the edges of W. Such is the case
for d=4, 6 and 8; in Lemma (36) even if (a,b)+#1, if a+b=<8, then we get that
h=xyb
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50. But when d=9 we can no longer get that m=1 or n=1 by just looking at the
edges of W. In fact, if (a, b)=(6, 3), then there are (-1, 3)-forms h and w such that
[h, w] =h and h is not a monomial. Also there are (1, —1)-forms 4 and w such that
[, wl=h and h is not a monomial. This means that in order to get m=1or n=1

we must dig deeper into the interior points of S, and S, (i.e., the interior points of
mW and nW).
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